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Abstract
To estimate the growth of the hard-to-age Caribbean spiny lobster Panulirus argus in the southeastern USA, a

double-maximum-likelihood-estimation method (referred to as the “likelihood model”) has been applied to the mark–
recapture data collected in the Florida Keys from 1967 to 2003. Parameters related to the intermolt period and the
growth increment have been assessed, and the uncertainty of the parameters has been estimated using the bootstrap
resampling method. For better comparison with the previously published step-wise growth models, an individual-based
model, in which the variance and covariance of model parameters were fully considered, has been developed to simu-
late growth transition matrices. The simulation results were compared directly by using the Frobenius Norm. The
results indicated that the likelihood model produces a more conservative growth estimate with lower uncertainty. How-
ever, the likelihood weights should be set with caution. This study can improve our understanding of the growth of the
Caribbean spiny lobster. The products can be directly used in the future for integrated size-structured, stock assess-
ment models for Caribbean spiny lobster; the methods can be easily adaptable to other crustacean species.

The Caribbean spiny lobster Panulirus argus is widely
distributed in tropical and subtropical waters of the Atlan-
tic Ocean (Phillips and McWilliam 1986; De Le�on et al.
2005; Freitas and Castro 2005; Rudorff et al. 2009). This
species is harvested by 23 counties in the Caribbean area
and supports the most valuable fisheries in the region
(Holthuis 1991; Ehrhardt 2001; Heileman 2007). Due to
its economic importance, various stock assessment models
have been produced to describe the population dynamics
of the Caribbean spiny lobster, including virtual popula-
tion analysis (Gongora 2010), a yield-per-recruit model
(Font 2002; Fadragas 2005), the state–space model, statis-
tical catch-at-age analysis, and the modified DeLury

model (SEDAR 2010). However, none of above models
accounted for variability in growth.

Modeling the growth of individuals of a species is an
essential component in stock assessment, as that relates to
the expected growth of a fishery stock, which directly
affects the sustainable harvest level (Holland 2010; Francis
2016). Traditional spiny lobster stock assessment models
are stage- or age-structured and use continuous growth
curves, e.g., von Bertalanffy growth functions (Fadragas
2005; Gongora 2010; SEDAR 2010). However, the unique
life history of the Caribbean spiny lobster makes its growth
hard to formulate. First, the growth of a Caribbean spiny
lobster individual is discontinuous. The lobster’s size only
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changes as a result of the molting process; otherwise, it
remains unchanged during the intermolt period. This
growth pattern is called “stepwise growth” (Anger 1998).
Second, the Caribbean spiny lobster lacks otoliths, verte-
brae, and scales that are found in finfish species and used
to help estimate age. Last but not least, significant varia-
tions exist in the growths of individual lobsters within a
stock and among stocks (FAO 2001). Newly emerged
aging methods include taking measurements of the pigment
neurolipofuscin (Maxwell et al. 2007) or the eyestalk, or by
examining the gastric mill (Kilada et al. 2012). However,
until now those methods have not been proven to be pre-
cise enough to represent the growth of Caribbean spiny
lobster. Because of those biological features described
above, caution should be exercised when traditional contin-
uous growth models are employed to describe the step-wise
growth process. Applying mark–recapture data in continu-
ous growth model-fitting could introduce bias and amplify
uncertainty, as the observed size change and the recorded
period at liberty are asynchronous. Furthermore, a defi-
ciency of von Bertalanffy growth functions is that the max-
imum size and growth rate parameters are negatively
correlated (Pardo et al. 2013; Johnson and Swenarton
2016). For species like lobster, whose maxima are always
unknown, combination assumptions need to be made on
the growth parameters. For example, Punt et al. (2006)
assumed one parameter to be fixed for the population,
while allowing the other to vary among individuals.
Besides the physiological constraints, e.g., younger lobsters
molt more frequently than elders (Ehrhardt 2008), some
environmental factors may also affect the molting fre-
quency of the lobster, such as abundance of food and water
temperature (Lellis and Russell 1990). In addition, the
average growth of the carapace length (CL) per molt varies
between sexes (female and male) and seasons (summer and
winter) for Caribbean spiny lobster (Ehrhardt 2008).

Fisheries scientists have investigated the growth of the
Caribbean spiny lobster based on its molting process. Hoe-
nig and Restrepo (1989) developed a “molt–no-molt”model
to estimate the probability of molting according to the inter-
molt period and the “days-free” (number of days between
the release and recapture dates). The duration of the inter-
molt period was also assumed to be an exponential function
of the CL at the time of tagging. Based on comparison of
the recorded days-free with the estimated inter-molt period,
each recapture record is classified into one of three types—
no molt, molt once by chance, and molt at least once—with
the probability of that outcome calculated using the days-
free and estimated intermolt period. The total likelihood is
the product of the probability that each recorded individual
falls into one of the above three types. Consequently,
parameters could be estimated by maximizing the total like-
lihood. However, lobsters with unchanged CL had been
observed after a long days-free period but were not included

in Hoenig and Restrepo (1989), and the molting increment
was not estimated either. Muller et al. (1997) used hierar-
chical generalized linear models (GLMs) to describe the
growth procedure of the lobster in two processes: molting
probability and molting increment. The probability that an
individual lobster molts in a given month was linked to a
logit function of its CL at tagging time and days-free, as
well as zone (using Big Pine Key as the boundary between
the upper and lower Florida Keys, hereafter Keys), season
(summer from May to October or winter from November
to the next April), and sex (female or male). For the growth
increment, a log-normal error distribution was assumed
with an identity link function, and the CL, days-free, sea-
son, zone, and sex were also considered. Ehrhardt (2008)
described another Caribbean spiny lobster growth model
that was originated from Munro (1974). Two regressions
were used. Observation records were delivered into a set of
predefined CL bins on the basis of the CL at time of tag-
ging. The median intermolt period was roughly estimated
according to the cumulative percentage of molted individu-
als against the days-free, and an exponential function was
used to explore the relationship between the median inter-
molt periods and the median size of those bins (Munro
1974). Then a linear function was taken to fit the premolt
and postmolt CLs. Sex (female and male) and CL (<70 and
>70 mm) were considered to yield the growth differences.

Both Hoenig and Restrepo (1989) and Muller et al.
(1997) used mark–recapture data as their only data source.
Mark–recapture data is a primary information source that
uses a probabilistic framework to estimate the growth
rates of aquatic species (Laslett et al. 2002), especially for
those species for which aging methods cannot be imple-
mented directly (Wang et al. 1995). Marking and recap-
turing organisms from a natural population instead of
experimental environments could reduce bias caused by
controlled experimental settings and produce greater accu-
racy in prediction. Ehrhardt (2008) used mark–recapture
data as well but included some laboratory observations
from Sweat (1968) to investigate the intermolt period of
young lobsters. To separate single-molt individuals from
those with multiple molts, Muller et al. (1997) set a
4-month (120 d) cut-off value for days-free.

Previous studies about the growth of Caribbean spiny
lobster individuals only focused on developing determinis-
tic equations but failed to encompass the uncertainty of
the parameters. With the growth curves, the catch-
at-length data can be transformed into catch-at-age data
that are required by the age-structured stock assessment
model (Muller et al. 1997; SEDAR 2010). For example,
the latest stock assessment adopted the mean growth
curves of Ehrhardt (2008), but no relevant justification
was provided for the one-to-one corresponding age–length
key (SEDAR 2010). However, being an important source
of uncertainty for population dynamics, variations in the
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growth of the lobsters should not be ignored in stock
assessment.

The main objective of this study was to develop growth
transition matrices for the Caribbean spiny lobster in Flor-
ida waters from the mark–recapture data. A statistical
model that originated from Hoenig and Restrepo (1989)
was modified. Then the results of the newly developed
method were compared with those derived from previously
published step-wise growth models that had been applied
to describe the growth of Caribbean spiny lobster, such as
in Muller et al. (1997) and Ehrhardt (2008). The growth
transition matrices, which indicate the percentage of indi-
viduals in each size bin that remain in the same bin or molt
into larger size bins in one time-step (e.g., a season), could
be simulated and compared. The most accurate and precise
ones would be identified and recommended for the future,
“integrated,” size-structured, stock assessments. This study
could promote our understanding of the growth of the Car-
ibbean spiny lobster and will be easily adaptable to other
crustacean species.

METHODS
Mark–recapture data.— The Florida Fish and Wildlife

Commission (FLFWC) provided the mark–recapture data
that we used in this project. The data were collated from
long-term tagging experiments conducted from 1967 to
2003, and the mark–recapture methods were consistent
throughout the decades (Hunt and Lyons 1986; Muller
et al. 1997; Ehrhardt 2008). In total, 6,967 individual lob-
sters with tags were recaptured; 6,469 (92.8%) were tagged
from 1975 to 1979, 118 (nearly 2%) lobsters were tagged
before 1970, and 380 (>5%) lobsters were tagged after 1998.
For most recaptured lobsters, their length at tagging, recap-
ture length, and days-free were recorded, as well as sex,
injury (whether the lobster was missing a limb), tagging sea-
son, tagging zone, and tagging area (bayside or ocean side
of the Keys). Records with missing information on either
tagging or recapture length were excluded for the purpose
of growth modeling. After data filtering, 6,891 records
remained. Most of the data collected in the lower Keys were
collected from June 1975 to October 1976, which accounts
for 46.2% of the total data, while the remaining 53.8% of
the data were collected in the upper Keys from January
1978 to March 1979 (Muller et al. 1997). In the data collec-
tion, the measurement error was suggested as 2 mm CL,
which means only those recaptured individuals with more
than 2-mm increases in CL were considered as molted lob-
sters (Hunt and Lyons 1986; Ehrhardt 2008). Other lobsters
that may have molted but without a detectible increase in
size (Marshall 1948) were treated as nonmolting individuals.
It is a reasonable modeling assumption, as the main objec-
tive of this study was to develop growth transition matrices
for future size-structured stock assessments, and those

lobsters that molt without a size change do not contribute
to the growth of the stock.

After 1967, 5,505 (~80%) lobsters without a change in
size were recaptured, while 1,386 (~20%) of the tagged
lobsters molted and had at least a 2-mm increment in CL.
For the rest of the tagged lobsters, growth information
was missing. From the valid growth records, the average
days-free was 23.33 d, 4,622 (~67%) individuals were
tagged in summer, 3,704 (~54%) individuals were tagged
in the upper Keys, 3,971 (~58%) lobsters were tagged from
the bay side, 51% of the tagged samples were female, and
the injury rate of the tagged lobsters was 25%. The size
distribution of the tagged lobster population was
73.78 ± 11.27 mm CL (mean ± SD), and that of the
recaptured population was 75.26 ± 11.26 mm CL.

Permutation tests based on 10,000 resampling iterations
are used to compare data between sexes, tagging seasons,
tagging areas, tagging zones, injury categories, and time peri-
ods (before 1980 and after 1998). For example, by randomly
shuffling the observed sex, the permuted growth difference
can be calculated. Considering growth as universal between
sexes, reassigning sex should not affect the mean apprecia-
bly. Then the rank of the observed growth difference among
the permuted growth difference distributions gives a P-value
(Good 1994).

Statistical analyses.—According to Hoenig and Restrepo
(1989), for the individual i, the “elapsed time” since the last
molt to the date of tagging is assumed to be uniformly dis-
tributed between 0 and g(CLi). Here g() is a sex-specific expo-
nential function describing the intermolt period at the length
CLi:

gðCLiÞ ¼ af ebf CLi for female
amebmCLi for male

�
; (1)

where af and bf and am and bm are sets of parameters for
females (f) and males (m), respectively. By comparing Δti
and g(CLi), the mark-recapture records can be classified
into four categories:

Category 1: if Δti < gðCLiÞ; P1
i ¼

Δti
gðCLiÞ ;

Category 2: if Δti < gðCLiÞ; P2
i ¼ 1� Δti

gðCLiÞ ;

Category 3: if Δti ≥ gðCLiÞ; P3
i ¼ 1;

and

Category 4: if Δti ≥ gðCLiÞ; P4
i ¼ e�20:

Category 1 represents all lobsters that molt by chance
(the change in CL is ≥2 mm, and days-free is less than the
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expected intermolt period). Category 2 represents lobsters
that have not molted (the change in CL is <2 mm, and
days-free is less than the expected intermolt period). When
Δti is greater than or equal to the expected intermolt period,
lobsters should molt (the change in CL is ≥2 mm) and have
a theoretical 100% molting probability, which classifies
them as category 3. Detailed explanations about the proba-
bility that records fall into each category can be found in
Hoenig and Restrepo (1989). A new category (category 4) is
added to allow for lobsters having a long days-free and
unchanged CL (the change in CL is <2 mm, and days-free
is greater than or equal to the expected intermolt period),
and a penalty weight is set to minimize the negative log like-
lihood, i.e., e−20. The total likelihood that all marked and
recaptured lobsters fall into the four categories can be con-
structed and maximized for parameter estimation by multi-
plying likelihood of all individuals:

Lmolt ¼ Πn1
i¼1

Δti
gðCLiÞ

� �
Πn2

i¼1 1� Δti
gðCLiÞ

� �
Πn3

i¼1ð1ÞΠn4
i¼1ðe�20Þ:

(2)

Here, n1, n2, n3, and n4 are the number of individuals that
fall into categories 1 through 4, respectively.

To prevent overestimation of the molting increment,
multiple-molt individuals that molt multiple times need to
be distinguished from single-molt lobsters (Hoenig and
Restrepo 1989). For each of the category 3 individuals,
probabilities that the individual falls into two subcate-
gories are calculated as follows:

Category 3.1: P�;3:1
i ¼ 1� Δti � gðCL�

i Þ
gðCLiÞ

and

Category 3.2: P�;3:2
i ¼ Δti � gðCL�

i Þ
gðCLiÞ ;

where P�;3:1
i is the probability that individual i has only one

molt, and P�;3:2
i is the molting probability of the individual i

having another molt before the recapture date, conditional
on already having one molt. The parameter CL�

i is the post-
CL of lobster i after one molt. Although the exact length is
unknown, its range lies between CLi and the length at recap-
ture. Based on the estimated parameters in g(CLi), an esti-
mate can be made for the range of the next intermolt period
after tagging, g(CL�

i ). Then the Naïve Bayes Rule (Ye et al.
2011) is adopted in the classification: when P�;3:1

i >P�;3:2
i ,

which means Δti < 0:5gðCLiÞ þ gðCL�
i Þ, an individual lob-

ster would have higher possibility to molt only once; other-
wise, multiple molts would be more likely to occur.
According to the estimate of gðCL�

i Þ, most of P�;3:1
i and

P�;3:2
i could be roughly compared due with their nonoverlap-

ping ranges. Only a few molting records will be excluded, as

the times of molting are difficult to determine. A lognormal
error distribution is assumed for the molting increment,
ΔCLi, and a linear relationship is detected between the loga-
rithmic molting increment and the tagging length:

logðΔCLiÞ ¼ cf CLi þ df for female
cmCLi þ dm for male

�
; (3)

where cf and df and cm and dm are parameter sets for
females and males, respectively. Therefore, the likelihood
of the molting increment can be estimated as

Linc ¼ Πnom
i¼1

1ffiffiffiffiffi
2π

p
σiðCL�

i �CLiÞ
e
�

logðCL�
i
�CLi Þ�logðΔCLi Þð Þ2

2σ2
i

2
4

3
5; (4)

where nom is the number of the single-molt lobsters, and σi
is the specified SD of the molting increment, which is
assumed to vary exponentially among individuals:

σi ¼ eφf CLiþψf for female
eφmCLiþψm for male

�
: (5)

The growth increment parameters, φf ;ψf ;φm; and ψm can
be estimated by maximizing Linc. As the total likelihood is a
combination of equations (2) and (5), this method is referred
to as the likelihood model in the following comparison.

The uncertainty of parameters, including variances and
covariance, are estimated by using a bootstrap method,
one of the commonly used resampling techniques to esti-
mate statistical relationships of parameters without strong
parametric assumptions to diagnose estimator bias (Mag-
nusson et al. 2013). This technique has been widely used
to estimate error structures in fisheries surveys (Smith and
Gavaris 1993; Smith 1997). In each resampling, 100% of
the records are randomly selected with replacement from
the original data pool to estimate model parameters. The
resampling process is repeated 10,000 times for each statis-
tical model, with the purpose of obtaining stable parame-
ters, and then the distributions of the model parameters
can be determined without making strong parametric
assumptions (Efron and Tibshirani 1993).

Previous methods.— In the method from Muller et al.
(1997), when the molting probability of individual i, Pi, is
estimated at the recapture date, a logit link function is
adopted with the assumption that the error follows a bino-
mial distribution:

Pi ¼ eaþbCLiþcΔtiþdZiþeTiþgXi

1þ eaþbCLiþcΔtiþdZiþeTiþgXi
(6)

where a is a constant, b is the coefficient for tag carapace
length, CLi, c is the coefficient for days-free, Δti, d is the
coefficient for tagging zone, Zi, e is the coefficient for
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tagging season, Ti, and g is the coefficient for sex, Xi. For
the individual i, whose molting probability is predicted to
be greater than 0.5, its molting increment, Ii (mm), can be
fitted by an exponential function:

Ii ¼ e~aþ~bCLiþ~cΔtiþ~dZiþ~eTiþ~gXi ; (7)

where parameters ~a to ~g have the same biological mean-
ings as parameters a to g, but the values are not con-
strained to be the same. The molting increment error is
assumed to be lognormally distributed. We refer to this
method as the “generalized regression model” in our anal-
ysis.

Although lacking laboratory data from Sweat (1968),
the method from Ehrhardt (2008) and Munro (1974) is
repeated and referred to as the “double regression model”
in our analysis. The individuals with a length at tagging
larger than 40 mm CL are first classified into sex-specific,
5-mm-interval size bins, and subsequently sorted in an
ascending order within each size bin according to their
days-free. A regression is conducted to fit the cumulative
percentage that the lobsters molt in each size bin along an
increasing days-free period to the cumulative normal dis-
tribution (Munro 1974). The median days-free (when 50%
of the lobsters molt) of the size bin is estimated from the
regression. Similar to Munro (1974) and Hoenig and
Restrepo (1989), tagging is assumed to randomly occur
between 0 and the full intermolt period. Therefore, the
intermolt period, on average, should be twice that the esti-
mated median days-free (Ehrhardt 2008). An exponential
relationship is also assumed between the average intermolt
period and the corresponding average tagging length:

gðCLiÞ ¼ ef egf CLi for female
emegmCli for male

�
; (8)

where ef and gf and em and gm are parameter sets for
females and males, respectively. In this method, two
regressions are sequentially applied; for each size bin, only
one intermolt period is roughly estimated and passed from
the first regression to the next.

Molting increment is expressed as a linear function that
links pre- and postmolt lengths in the double regression
model (Ehrhardt 2008):

CL�
i ¼ hf CLi þ of for female

hmCLi þ om for male

�
; (9)

where hf and of and hm and om are parameter sets for
females and males, respectively. To eliminate the effect of
multiple molts, the records with days-free longer than the
corresponding estimated intermolt period are excluded
when modeling molting increment.

As with to the likelihood model, bootstrapping has
been adopted to estimate parameter uncertainty of both
the generalized regression model and the double regression
model.

Simulations and comparisons.— Individual-based models
(IBMs) are developed to transform deterministic analytic
results to sex-specific, sized-based, growth transition matri-
ces using season as a time step. The individual-based mod-
els, as described by their names, take the variation of
individuals into account (Zhang et al. 2011). The recruit-
ment process is mimicked in the IBMs by adding the
growth process that a group of “pseudo” lobsters may
encounter in the field. Each “pseudo recruit” represents a
number of real recruit individuals, an approach that has
been proven to be a simple but efficient solution in model-
ing the dynamics of large population on an individual
basis (Scheffer et al. 1995). To match the analytical mod-
els, the temporal resolution of the IBMs is set at a day.
Every day, five “pseudo” lobster recruits that are smaller
than 46 mm CL enter into the IBM; 46 mm CL is the size
at which 1% of female lobsters start to mature (SEDAR
2010). The largest size bin is set as a plus-size bin that
includes all lobsters larger than 146 mm CL, as very few
lobsters survive to attain that size. The sex, tagging length,
and other characteristics (e.g., tagging zone) of the recruits
are assigned according to distributions observed from the
mark–recapture survey.

We adopted the probabilistic approach in the stochastic
simulation. Not only variations, but also correlations of
model parameter estimates were used to generate the ran-
dom sets of growth model parameters for the IBMs.
Those parameters, such as molting probability, intermolt
period, and the molting increment, were subsequently used
to determine the intermediate parameters for each individ-
ual “pseudo” lobster. For example, for a lognormal distri-
bution (e.g., the molting increment), random variations
were multiplied to the mean value to generate the “cus-
tomized” parameters for each of the five “pseudo” lobster
individuals in every molt. For a probabilistic proportional
parameter (e.g., the molting probability in each day), the
average values that an individual lobster fell into the
group i, pi, followed a multinomial distribution, and
∑pi = 1. To add variation for each individual lobster, a
randomly drawn value, p′, was compared with the cumu-
lative average molting probability in each size bin. If p′
was between ∑k�1

i¼1 pi and ∑k
i¼1pi, 1 ≤ k ≤ n (where n is

the total number of groups, and ∑0
i¼1pi is assumed to be

0), the lobster individual would be assigned into group k.
The individual-based models were simulated day after

day for 30 years to allow a large number of individuals to
reach the largest-size bin. Therefore, all size bins of the
growth transition matrices are covered. For each “pseudo”
lobster individual, the information related to growth can
be recorded every day. For easy comparison, only
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seasonal growth information was summarized in the IBM
results. The output results of IBMs use the form of
20 × 20 matrices. Each element in the matrix represents
the probability that an individual lobster molts from one
5-mm size bin to the same size bin or another bin. Each
individual-based model is simulated 100 times for each fit-
ted statistical growth model to estimate the mean and SD
of the growth transition matrices.

Frobenius Norm, also called the Euclidean Norm, is
used to calculate the similarity between two matrices
(Bhatia 2013):

‖G�M‖K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

i¼1∑
K
j¼1ðgij �mijÞ2

q
; (10)

where G is the targeted growth transition matrix (e.g., the
mean growth transition matrices or their SDs), K is the
order of the square matrix G, M is a K × K benchmark
matrix, and gij and mij are elements in matrices G and M,
respectively. A smaller value of the Frobenius Norm indi-
cates a greater similarity of the two matrices. In this study,
we set the benchmark matrix as the identity matrix when
comparing the mean growth transition matrices and used
the 0 matrix as the benchmark matrix when comparing the
SDs. Based on the assumption that the lobster would not
shrink after molting, all lobster individuals would stay in
the same size bin if there was no growth, and the growth
transition matrix would be the same as an identity matrix.
Similarly, if there was no variation in growth, the SD matrix
would be 0. A greater dissimilarity of the mean growth from
the identity matrix indicates a faster growth, and a greater
dissimilarity of the SD from the 0 matrix indicates a larger
growth variation. The Frobenius Norm can also be used to
track the segmented growth over size bins. The net growth
of size bin p can be expressed as the difference of Frobenius
Norms between size bins p and p − 1, i.e.:

‖G�M‖p � ‖G�M‖p�1:

All analyses and simulations were conducted using R
version 3.1.1, and the results are visualized by using R
and Tableau version 10.0. Due to the limited processing
power of a personal computer, a high performance com-
putational resource was deployed.

RESULTS
Using the likelihood model, both the intermolt period

and the logarithm of the growth increment could be esti-
mated as functions of the tagging length. The parameter
estimates and the covariance are found in Table 1, and
the relative growth is demonstrated in Figures 1 and 2.

The results revealed that the female Caribbean spiny
lobsters molted less frequently than the males

(permutation test: psexmolting < 0.05). Tagging zone and tag-
ging season also affected the molting probability (permu-
tation tests: pzonemolting < 0.05 and pseasonmolting < 0.05). Individual
lobsters tagged in the upper Keys or in winter molted less
frequently than those in the lower Keys or in summer. No
significant difference was observed in the molting proba-
bility either between lobsters inside and outside the bay
(permutation test: pareamolting = 0.2334) or between injured or
uninjured lobsters (permutation test: pinjuredmolting = 0.3038).
Therefore, it is reasonable to use only sex, tagging zone,
and tagging season in the generalized regression model as
categorical factors. Similarly, the molting increment was
significantly different between sexes (permutation test:
psexinc < 0.05), seasons (permutation test: pseasoninc < 0.05), and
areas (permutation test: pareainc = 0.0854), although it
could have been affected by the significant difference in the
observed days free (permutation tests: psexdays�free
< 0.05, pseasondays�free < 0.05, pareadays�free < 0.05). The estimates of
parameters for the generalized regression model are listed in
Table 1, and the relative SD varied from 3.4% to 46.5%.

Table 1 also includes estimated statistics of model
parameters for the double regression model, which are sex-
specific, but disregard tagging zone and tagging season.
Although the same exponential pattern was used in both the
likelihood model and the double regression model to
describe intermolt period, significant differences were found
in the base parameters between the two models (t-tests:
paf ;ef < 0.05 and pam;em < 0.05). However, no significant dif-
ference was found in the exponent parameters (t-tests:
pbf ;gf = 1 and pbm;gm = 0.618). Parameters estimates of the
double regression model had larger SD values than did the
likelihood model in modeling the intermolt period.

In addition, strong negative correlations were observed
between the intercepts and the parameters relating to CL
in all three statistical models (Table 2). Such strong corre-
lations could not be found between intercepts and parame-
ters related to the other variables in the generalized
regression model.

The estimates of growth contained within the general-
ized regression model were greater than those of the other
models, while the likelihood model had the slowest growth
estimations. All statistical models indicated that male lob-
sters molt faster than females (Figure 1), although the dif-
ferences between sexes were not significant for the
generalized regression model as they were in the other two
models (Figure 1). The largest variations with sex and sea-
son can be found in matrices estimated from the general-
ized regression model, and the matrices from the
likelihood model has the lowest variations (Figure 1).

In general, net growth decreased exponentially as size
increased, but some increases could be noticed (Fig-
ure 2A). For example, from the likelihood model results,
obvious boosts are found from size bin 4 to size bin 5 for
both males and females (61 to 71 mm CL); from the
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double regression model results, a subtle growth boost
was only be observed in male individuals from size bin 6
to size bin 8 (71 to 86 mm CL). Most growth occurred in
the first six size bins, and limited growth was observed
when CL is larger than 76 mm (Figure 2A). Large growth
differences among models are reflected in legal-size

lobsters: the likelihood model will lead to the minimum
growth, and the generalized regression model will show
the maximum growth, while the double regression model
will be in between those other models (Figure 2A). The
SD among size bins are stable and similar among the
three models, except for young lobsters tagged in summer

TABLE 1. Parameters of statistical models used to estimate the growth of Caribbean spiny lobsters using mark–recapture data. CV (%) = 100·SD/mean;
subscripts f andm indicate female andmale, respectively.

Model 1: likelihood model

Step 1 af bf am bm

Estimate 28.952 0.0278 23.325 0.0234
SD 7.844 0.00472 6.28 0.00458
CV (%) 27.1 17 26.9 19.6

Step 2 cf df cm dm

Estimate −0.00408 2.199 −0.00447 2.227
SD 0.00155 0.113 0.0017 0.124
CV (%) 38 5.1 38 5.6

Step 2 φf ψf φm ψm

Estimate −0.00233 −0.662 0.00283 –0.97
SD 0.00163 0.123 0.0025 0.187
CV (%) 70 18 89 −19

Model 2: generalized regression model

Step 1 a b c d (upper key) e (winter) g (male)

Estimate 1.578 −0.0641 0.0631 −0.31 −1.25 0.543
SD 0.275 0.0039 0.00214 0.086 0.113 0.078
CV (%) 17.4 6 3.4 28 8.8 14.4

Step 2 a′ b′ c′ d′ (upper key) e′ (winter) g′ (male)

Estimate 2.285 −0.00965 0.00658 −0.072 −0.244 0.12
SD 0.104 0.0014 0.00067 0.033 0.04 0.031
CV (%) 4.5 14.6 10.2 46.5 16.4 25.8

Model 3: double regression model

Step 1 ef gf em gm

Estimate 33.48 0.0193 38.2 0.0114
SD 19.86 0.0133 16.068 0.0069
CV (%) 59.4 68.9 42.1 60.5

Step 2 hf of hm om

Estimate 0.963 10.144 0.949 11.289
SD 0.0132 1.005 0.0155 1.184
CV (%) 1.4 9.9 1.6 10.5
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from the generalized regression model and the male lob-
sters in size bin 3 from the double regression model (Fig-
ure 2B).

Growth transition matrices of the three statistical mod-
els can be derived from the IBM, and their means and
SDs are provided in Figures S1–S3 available in the Sup-
plement separately online. These matrices can be used
directly in future size-structured stock assessment. With
the developed growth transition matrices, Frobenius Norm
was used to quantify the dissimilarity among models,
sexes, and seasons, and also among different size bins.
The cumulative trend of net growth for each size bin
demonstrates the same conclusion as that found using the
Frobenius Norm (Figure S4).

DISCUSSION
For an important fisheries species like Caribbean spiny

lobster, a cautionary stock assessment should be employed
to ensure that the resource is sustainable for current and
future generations. However, there is no effective stock
assessment model for the spiny lobster fishery in the
southeastern United States (SEDAR 2010). An on-going
project has been funded by the Florida Sea Grant to
develop a size-structured stock assessment model. For a
size-structured model, the growth component is critical,
but many stock assessments “fail to document how such
matrices are estimated” (Punt et al. 2016). In this study,

the individual growth of Caribbean spiny lobsters is esti-
mated from a set of mark–recapture data. Mark–recapture
data have been frequently used to generate the growth
transition matrix. The mark–recapture surveys have been
conducted in the Florida Keys for more than 40 years,
although without continuous sampling. There was a nearly
two-decade gap from 1980 to 1998. A significant differ-
ence in molting probability has been found in subgroups
before and after the gap (pperiodmolting < 0.05). That might be
due to the longer days-free periods observed after 1998
(pperioddays�free < 0.05). No such significant difference has been
observed in molting increment (pperiodinc = 0.2488). As the
mark–recapture data were collected in discrete time

FIGURE 1. The general growth transition matrices (mean ± SD) for the
Caribbean spiny lobster derived from the generalized regression model
(GR), the likelihood model (LL), and the double regression model (DR).
The y-axis indicates the unitless Frobenius Norms of growth transition
matrices; Fe = female,Ma = male.

FIGURE 2. (A) Mean and (B) standard deviation of the net growth for
the Caribbean spiny lobster over size bins from the generalized regression
model (GR), the likelihood model (LL), and the double regression model
(DR). Fe = female, Ma = male.
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periods, 95% of the records were between the years 1975
and 1979, while both the current age-structured stock
assessment model and the newly developed size-structured
stock assessment model focus more on the period after the
year 1990; data for the early and late periods are pooled.
The change in molting probability was not taken into
account in the analysis, because the 5% of the records
after 1998 were not sufficient to afford an accurate and
precise analysis. In the future, when longer mark–recap-
ture time series data become available, more growth tran-
sition matrices can be developed in a finer temporal scale
to track the growth of Caribbean spiny lobster in the
southeastern USA.

Multiple statistical analyses have been developed to
estimate the growth of the Caribbean spiny lobster
(Munro 1974; Hoenig and Restrepo 1989; Muller et al.
1997; Ehrhardt 2008), but few comparisons have been
completed to identify the most appropriate one. That is
because previous statistical analyses were based on diverse
assumptions, constructed by unnested model equations,
and fitted by different methods. Thus, it is difficult to
compare the results directly. In this study, alternative sta-
tistical models were examined using the same data set to
review their performances in growth estimation. The meth-
ods developed in this study could be further developed to
simulate the growth of crustacean species in fluctuating or
heterogeneous environmental conditions.

Of the three statistical models compared in our study,
the generalized regression model (Muller et al. 1997)
revealed the growth differences among the individuals of
different sexes and from different seasons and zones. How-
ever, the root causes were still concealed. For example,

the model results indicated that the negative effect of the
upper Keys tagging zone on lobster growth may not be
consistent with reality. The boundary of the upper and
lower Keys was determined by diverse geological charac-
teristics: the upper Keys consist of Key Largo limestone
covered by sandy-type grains, while the lower Keys consist
of Miami limestone covered by the remnants of coral reefs
(Hoffmeister and Multer 1968). There has been no direct
evidence to prove the relationship between geological
characteristics and growth of lobsters. Habitat may be a
more reasonable explanation, as seagrass habitats
are more energetically profitable (Lipcius et al. 1998) and
more preferable for the growth of juvenile lobsters than
vegetated habitats (Behringer et al. 2009; Bertelsen et al.
2010). However, if that was the case, the individual lob-
sters tagged in the upper Keys should be relatively smaller
in size and have a higher growth rate, due to the more
extensive distributions of seagrass beds (Butler et al. 2005;
FLFWC 2016). The inconsistency between the model and
reality could result from the significantly different lengths
of days-free periods (pareadays�free < 0.05): Lobsters tagged in
the upper Keys have 28.75 days-free on average, which is
much longer than the 16.94 mean days-free observed in
the lower Keys. A further explanation is that shelters for
larger juvenile and adult lobsters are more available in
coral reefs (Bertelsen et al. 2010). Higher predation risk in
the upper Keys requires longer observation time to get an
equivalent sample size as that of the lower Keys. There-
fore, we believe the negative effect of the upper Keys in
the generalized regression model is related to the effect
caused by days-free. Similarly, the significant differences
observed between tagging seasons could be attributed to

TABLE 2. Correlation coefficients of statistical growth models used to estimate the growth of Caribbean spiny lobsters using mark–recapture data.
Subscripts f and m indicate female and male, respectively.

Model 1: likelihood model
Step 1 cor(af, bf) cor(am, bm)
Coefficient –0.886 –0.957
Step 2 cor(cf, df) cor(cm, dm)
Coefficient –0.989 –0.99
Step 2 cor(/f, ψf) cor(/m, ψm)
Coefficient –0.968 –0.988

Model 2: generalized regression model
Step 1 cor(a, b) cor(a, c) cor(a, d) cor(a, e) cor(a, g)
Coefficient –0.945 0.069 –0.149 –0.216 –0.055
Step 2 cor(a′, b′) cor(a′, c′) cor(a′, d′) cor(a′, e′) cor(a′, g′)
Coefficient –0.912 0.057 –0.391 –0.079 –0.294

Model 3: double regression model
Step 1 cor(ef, gf) cor(em, gm)
Coefficient –0.836 –0.954
Step 2 cor(hf, of) cor(hm, om)
Coefficient –0.99 –0.99
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fluctuating water temperature and/or the varying nutrition
and light levels (Travis 1954; Passano 1960) but might be
misinterpreted due to the short observation period. Recap-
tured lobsters with more than 120 days-free were excluded
from the training data set, although those only make up
2.5% of the entire tagged population. The generalized
regression model will result in large bias in the IBM simu-
lation when the “pseudo” lobsters have longer simulated
days-free.

In summary, the generalized regression model adopted
flexible link functions that related the linear model of the
explanatory variables to the response variable, and the
error distributions can be other than natural distributions
(McCullagh and Nelder 1989). However, a fundamental
assumption of regression is the independence among pre-
dictor variables. Interactions among explanatory variables
should be carefully considered to avoid bias and minimize
errors.

The growth transition matrices derived from the double
regression model have smaller SDs than the generalized
regression model. However, that does not mean the dou-
ble regression model has more precise estimations. The
smaller variations result from the exclusion of individual
variations within size bins (Restrepo and Hoenig 1988),
thus dramatically reducing the degrees of freedom pro-
vided by the mark–recapture data. Another defect of the
double regression model is that the mark–recapture data
lack sufficient observations for smaller and larger size bins
to estimate a robust median intermolt period (Figure S5).
Accordingly, process errors relating to model parameters
are amplified.

Unlike the study of Ehrhardt (2008), which integrated
experimental data from Sweat (1968) for lobsters from
smaller size bins, this study only focused on mark–recap-
ture observations with the purpose of better reflecting
growth in natural populations (Sandercock 2006). Plus,
integrating experimental data cannot improve the double
regression model due to the potential bias and systematic
error. Growth experiments for the Caribbean spiny lobster
under specified environmental conditions, like water tem-
perature and light, may be relatively easy to imitate artifi-
cially, but the spatial–temporal dynamics are always
ignored. Moreover, it is impossible to reconstruct diverse
habitats within limited laboratory space.

Using inaccurate growth estimations in lobster stock
assessment could lead to severe consequences for fisheries
management, such as overfishing and stock collapse (Fu
and Fanning 2004; Sterner 2007). Most of the differences
among the three statistical models were found for the lob-
sters of sizes larger than 71 mm CL. The likelihood model
generated the most conservative growth transition matrices.
However, in the likelihood model, the accuracy of the esti-
mated growth parameters is sensitive to the weights
assigned to records that fall in each category. Hoenig and

Restrepo (1989) did not include the long days-free, no-molt
records, which is equivalent to assuming a minimum pen-
alty weight, e0, for likelihood in category 4. A potential
effect of this oversight could be underestimation of the
intermolt period, where all records in category 4 are mis-
classified into category 3. An opposite extreme is to assume
a large penalty weight, e.g., e−10,000. Under that assumption,
it is nearly impossible for any mark–recapture records to
fall into category 4, and the intermolt period will be overes-
timated. In this study, we modified the method used in Hoe-
nig and Restrepo (1989) and used a relatively mild penalty
weight, e−20, in the likelihood model. This weight was set
based on a rough estimation of the average likelihood for
each record, which is around 0.8 when the minimum pen-
alty weights in category 4 were assumed. The weight setting
also considered the much smaller sample size of the long
days-free, no-molt records; only 1% of the records had more
than 170 days-free, 15% of which had no increase in lobster
size. Therefore, each record that falls into category 4 was
amplified 100 times, which makes (0.8)100 = e−20. In the
future, the setting of penalty weights will be refined after
discussions with stock assessment scientists.

Growth transition matrices have been commonly used
in integrated size-structured stock assessment models (Punt
et al. 2013). However, most of the growth processes in
fisheries stock assessment reported only the means but
ignored the variations (Maunder and Piner 2015). One of
the objectives of our study is to account for this missing
component for the Caribbean spiny lobster stock assess-
ment. Bootstrapping resampling methods are used to esti-
mate the uncertainty of growth parameters, and then the
simulation method is applied to merge multiple probabil-
ity distributions of correlated parameters into matrices. In
the bootstrapping, the ratio between every bootstrap and
parent sample sizes is set as 1:1, and the resampling size
was determined to be 10,000 because the mean and varia-
tion of parameter estimates became consistently stable
after 10,000 resamplings in all three statistical models
(Figures S6–S8). When the three statistical models are
compared, growth estimated from the likelihood model
has the smallest variation. The robustness makes the
growth transition matrices derived from the likelihood
model more suitable for the future Caribbean spiny lobster
stock assessment in reducing the uncertainty of the assess-
ment results (FAO 1996; Restrepo and Powers 1999).

Restrepo and Hoenig (1988) proposed the effect of tag
loss and mortality on estimated growth. In the comparison
of the three statistical models, the molting probability of
the generalized regression model will be directly affected
by tag loss and mortality, while the intermolting period of
the double regression model will be indirectly affected.
The likelihood model will be the least-affected model
under given tag loss and mortality due to the employment
of the maximum likelihood estimation.
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One imperfection of the current mark–recapture data is
that the samples are collected in different zones without
temporal overlap, which should be avoided if any new
mark–recapture survey program is designed to provide
updated growth information for the Caribbean spiny lobster
in the Florida Keys. A long observation period needs to be
incorporated with the purpose of providing sufficient infor-
mation about the intermolt period for the lobsters that take
longer than one season to molt. Also, balanced samples
should be collected from both the heavily harvest areas and
no-take zones (SEDER 2010). Federal fishery regulations
forbid Caribbean spiny lobster harvest in the Dry Tortugas
National Park and Florida Keys National Marine Sanctu-
ary (U.S. Office of the Federal Register 1997). Compared
with no-take zones, fishing areas would have fewer large
individuals available for harvest. Therefore, the average
growth will be overestimated in heavily harvested areas and
may be underestimated in no-take zones.

In conclusion, this study improved an analytical growth
model for the Caribbean spiny lobster and was the first time
that all previous analytical growth models for Caribbean
spiny lobster had been examined with the full mark–recap-
ture data set. Growth transition matrices were developed
for future stock assessment models, and the uncertainty was
also estimated. By using the Frobenius Norm and the simu-
lation method, unnested analytical models developed on
various assumptions can be compared.
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